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Abstract

We use a laboratory experiment to study preferences over false-positive and false-negative

rates of warning signals for an adverse event with a known prior. We find that demand does

not adequately respond to changes in signal quality. Subjects disproportionately reduce their

demand for signals with higher false-negative rates for rare events, while the opposite holds

true for frequent events. We show that neither risk preference nor Bayesian updating skills

can fully explain our results. Our results are most consistent with a decision-making heuristic

in which subjects do not distinguish between false-positive and false-negative errors.
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1 Introduction

The trade-offs between false-positive and false-negative errors of warning systems often have life-

and-death consequences. The 2010 gas blowout on the Deepwater Horizon oil rig killed 11 workers

and caused one of the largest oil spills in history. The death toll was possibly aggravated by the

switching off the general safety alarm because the rig “did not want people woke up at 3 a.m. from

false alarms” (Brown, 2010). In medicine, different expert groups often disagree with the cancer

screening guidelines issued by the U.S. Preventive Services Task Force, in large part over their

perceived trade-offs between the costs from missed early detection against the potential harms

from overdiagnosis or overtreatment due to false positive results (Rabin, 2024).

Most real-world warning systems — medical diagnostics, security alarms, extreme weather

alerts — transform continuous signals about the likelihood of an adverse state into a yes/no

binary signal. This transformation requires choosing a threshold for a positive classification. A

lower threshold lowers the probability of failing to warn of an adverse state (false-negative rate)

but increases the probability of warning in a safe state (false-positive rate). While the optimal

threshold depends on user preference over the costs of these probabilistic errors, currently there

is no guidance on what this threshold might be beyond assuming that decision-makers weigh

false-positive and false-negative costs equally.

To address this gap, we conduct a laboratory experiment to measure the demand for warning

signals with varying quality. In the experiment, subjects receive information about the prior

probability of an adverse event and are asked to take a protective action after receiving a signal with

known false-positive and negative rates. We then elicit our main outcome, i.e., their willingness-to-

pay (WTP) for each signal. To account for subject heterogeneity, we use two separate experimental

tasks to measure their risk preference and Bayesian updating skill.

We compare the behavior of our subjects to that of a risk-neutral, utility-maximizing decision

maker that we derived from a simple model. Subjects’ WTP is weakly correlated with the value of

information, resulting in the overpaying for low-quality signals and underpaying for high-quality

signals. Importantly, we find asymmetric (under-)responsiveness by prior: with a low (high) prior,

their WTP does not fully adjust for the increase in the false-positive (false-negative) costs. We

provide evidence that this pattern is most consistent with a failure to estimate the effect of the

frequencies of false-positive and false-negative outcomes on the potential costs of using the signal.

We contribute to the literature in two ways. First, we provide novel evidence on the demand

for warning systems using an incentivized experiment. Existing studies of warning systems, which

mostly focus on medical diagnostic tests, use unincentivized surveys to measure WTP and do not

explore preferences over the tests’ information structure. They find that preferences over diagnostic

tests correlate with their accuracy, but respondents exhibit two significant biases. First, they are
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willing to pay for tests with little or no diagnostic value (Schwartz et al., 2004; Neumann et al.,

2012). For example, Schwartz et al. (2004) find that 73% of Americans prefer a free full-body CT

scan versus $1,000 in cash even though full-body scans for healthy people are not recommended

by physicians. Second, how the test’s accuracy is presented strongly affects choices (Howard and

Salkeld, 2009). We extend this literature using a context-neutral experiment to examine whether

similar biases hold more generally and when choices are incentivized; and whether the demand

elasticity for information responds symmetrically to false positive and false negative errors.

Second, we contribute to the emerging experimental literature on demand for information qual-

ity by studying a novel setting of demand for warnings. Previous studies in this literature employ

prediction games, where subjects have to guess an optimal state under uncertainty (Hoffman,

2016; Ambuehl and Li, 2018; Xu, 2022). Generally, they find that while demand for information

increases with signal quality, it increases more modestly than expected from a Bayesian decision

maker. Two of these studies employed laboratory experiments. Ambuehl and Li (2018) find that

subjects underreact to the accuracy of a binary signal about the state of the world, but put a pre-

mium on completely certain signals. Xu (2022) shows that many subjects choose non-instrumental

over instrumental signals, consistent with failures of contingent reasoning about the future value

of information.

Our setup differs from those of Ambuehl and Li (2018) and Xu (2022). We study preferences

over warning signals where subjects face a costly protection decision with three distinct payoffs:

full payoff, full payoff minus protection costs, and full payoff minus losses. Hence, risk preferences

affect the value of information and can change sensitivities to false-positive and false-negative

rates. We also directly elicit both willingness-to-pay and potential protection decisions for different

combinations of priors and signal characteristics, allowing for a more general conclusions about

subjects’ preferences. Consistent with Ambuehl and Li (2018), our subjects overvalue inaccurate

signals, but we do not find a premium for signals with high certainty.

Additionally, the subject’s choices after receiving a signal in our experiment are equivalent

to insurance decisions with full coverage. Hence our results also apply to insurance problems

when subjects receive additional signals of their risks (such as flood zone designations). While on

average people under-insure with respect to rare natural disasters (Friedl, Lima de Miranda and

Schmidt, 2014), the demand for insurance goes up immediately after an insurable adverse event

(e.g., Kousky, 2011). One proffered explanation is that subjects overweight recent evidence leading

to under-insurance when there were no negative events in the recent past and to overinsurance

after the fact (Volkman-Wise, 2015). This is consistent with underweighting prior probabilities

relative to more recent signals. At the same time, however, Laury, McInnes and Swarthout (2009)

find no under-insurance for low-probability events in the laboratory setting. We similarly find

that, on average, subjects do not under-insure after receiving a signal even though we see potential
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over-protection for negative signals.

The paper proceeds as follows. The next section sets up a simple model and outlines our

hypotheses. Section 3 describes the experimental design. Given the novelty of some of the experi-

mental tasks, we present our results in three consecutive sections. First, we describe a theory-free

exposition of subjects’ choices in all treatments in Section 4. Then, Section 5 describes the results

for main empirical tests of this paper with regards to the willingness-to-pay for signals. Finally,

we explore potential explanations for the observed pattern of underreaction to false-positive rates

for low initial probabilities in Section 6. Section 7 concludes.

2 Model

Environment. Let ω ∈ {0, 1} denote the state of world, where 1 corresponds to an adverse

event that happens with probability π and induces a loss, L. An agent can take protective action

a ∈ {0, 1} to avoid losing L under the adverse state. The loss is realized only when ω(1− a) = 1.

The agent’s preferences are described by a utility function that depends on income Y , protective

action a, and the protective outcome ω(1− a). Taking the protective action costs c > 0 as given,

utility is separable in wealth, protection cost, and the potential loss L > c in the adverse state if

not protected:

U = U(Y, a, ω(1− a)) = u(Y − ac− ω(1− a)L)

The agent can purchase information in the form of a binary signal s ∈ {0, 1} about the state of

the world. Let Pij ≡ P (s = i|ω = j) be the probability that signal s takes the value i conditional

on the state of the world being j. After learning the signal’s value, the agent updates her belief

on the likelihood of the adverse event to µ(s). We assume that she is Bayesian and her posterior

belief equals to:

µ(s) =
πPs1

πPs1 + (1− π)Ps0

where a larger µ(s) implies a higher posterior probability of the adverse event.

Preferences. Without a signal, the agent protects if and only if it increases her expected utility:

EU0 = max[u(Y − c), πu(Y − L) + (1− π)u(Y )]
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Access to a signal can increase expected utility if the signal affects her protection decisions. Under

these assumptions, her expected utility with a signal is:

EUs = πP11u(Y − c) + πP01u(Y − L) + (1− π)P10u(Y − c) + (1− π)P00u(Y )

Denote the agent’s willingness to pay for the signal by b, which means that she is indifferent

between purchasing it at price b and not purchasing it and not learning its realization. The signal’s

value is equal to the maximum between zero and the solution to the following equation:

P (s = 1)u(Y − b− c) + πP01u(Y − b− L) + (1− π)P00u(Y − b) =

= max[u(Y − c), πu(Y − L) + (1− π)u(Y )]
(1)

where P (s = 1) ≡ πP11 + (1 − π)P10. The left-hand side expression of this equation is a strictly

decreasing function of b. Additionally, for b → ∞ the left-hand side is smaller than the right-hand

side. It implies that equation (1) has at most one positive solution.

Obviously, b > 0 for a perfectly accurate signal because the payoff distribution with the signal

first-order stochastically dominates the distribution without it. However, determining the value of

an imperfect signal is non-trivial, as it requires more restrictions on preferences to allow weighing

u(Y − L) against u(Y − c).

Risk-neutral agent. If the agent is risk-neutral, the expression above collapses to:

b+ P (s = 1)c+ πP01L = min[c, πL]

The signal’s value is just:

b = max[0,min[c, πL]− P (s = 1)c− πP01L]

We can express the WTP for the signal, b, as a function of priors, false-positive (FP), and

false-negative rates (FN) denoted correspondingly as P10 and P01. This is the equation we use in

our empirical work:

b = max[0,min[c, πL]− π(1− P01)c− (1− π)P10c− πP01L] (2)

The WTP for signals b has equal sensitivity to expected FP and FN costs calculated as π(1−P01)c

and πP01L. When b > 0, its derivatives with respect to FP (P10) and FN (P01) rates are given by:

db

dP10

= −(1− π)c (3)
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db

dP01

= −π(L− c) (4)

The signal’s value is decreasing in both FP and FN rates. The effect is proportional to the

non-adverse (adverse) state probability for the false-positive (false-negative) rate.

Risk Aversion. In an expected utility framework, risk aversion can either increase or decrease an

agent’s valuation of the signal. More specifically, risk aversion decreases her WTP when protection

costs are low:

Proposition 1. If protection costs are low, (i.e., c < πL), then a strictly risk-averse decision-

maker pays less than a risk-neutral one.

Proof. See the Appendix.

For low-enough protection costs, risk-averse decision-makers protect by default without using

a signal. Things are more ambiguous with low risks or higher protection costs. For example, risk

aversion increases the value of a perfect signal as long as a risk-averse decision-maker chooses to

not protect without a signal. This follows from the standard argument that demand for insurance

increases with risk aversion, and the fact that the protection problem with a perfect signal is

isomorphic to the insurance problem with deductible c.

Next, we examine the effect of a signal’s false-positive and false-negative rates on the WTP, b.

Assuming a differentiable utility function u(.), we use implicit differentiation to derive sensitivities

of b to false-positive (FP) and false-negative (FN) rates:

db

dP10

= −(1− π)(u(Y − b)− u(Y − c− b))

D(π, P01, P10, b)
(5)

db

dP01

= −π(u(Y − c− b)− u(Y − L− b))

D(π, P01, P10, b)
(6)

with the denominator equal to the expected marginal utility:

D(π, P01, P10, b) ≡ P (S = 1)u′(Y − c− b) + πP01u
′(Y − L− b)+

+(1− π)P00u
′(Y − b) = E[MU ] > 0

The signal’s value decreases with FP and FN rates, i.e., db
dP10

and db
dP01

< 0. We can also say a bit

more about the sensitivity to FN rates:
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Proposition 2. A risk-averse and imprudent decision-maker has higher sensitivity to FN rates

compared to a risk-neutral decision-maker.

Proof. See the Appendix.

Equation 5 shows that risk aversion can either increase or decrease a decision-maker’s sensi-

tivity to FP rates depending on the utility function’s curvature and the signal’s characteristics.

Intuitively, the expected marginal utility of a strongly risk-averse subject with an imperfect signal

can be lower than the average slope of the utility function between (Y − c− b) and (Y − b) which

reduces sensitivity to FP rates. It can also be higher if either the signal is perfect or the curvature

is small. We can only say that it is very likely that for low protection costs and small priors

π (leading to no automatic blind protection) the ratio of sensitivities to FP rates over FN rates

should be lower for risk-averse subjects.

Proposition 3. For low protection costs c and small risks π, risk aversion lowers relative sensi-

tivity to FP rates.

Proof. See the Appendix.

At the same time, equation 6 shows that the sensitivity to FN rates depends on weighing the

marginal utility of consumption when experiencing losses after paying for a signal against the

expected marginal utility after paying for a signal (denominator). The former brings lower-than-

average payoffs that corresponds to lower marginal utility for risk-averse decision makers, but the

ratio also depends on how the decision-maker perceives lotteries in payoff changes described by

prudence. The average marginal utility is going to be higher only when the decision-maker is both

risk-averse and dislikes lotteries in payoff changes (i.e., imprudent with u′′′() < 0).

* * *

The model offers two testable hypotheses on the WTP that can be brought to the experiment.

First, as a natural starting point, we can test whether subjects’ WTPs are equal to the values

predicted for risk-neutral expected-utility maximizers given in equation 2. Second, the model

of a risk-neutral agent suggests that subjects’ WTP should have equal sensitivity to costs from

false-positive and false-negative signals (equation 2).
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3 Experimental Design

We conducted the experiment in the Behavioral Business Research Lab (BBRL) at the University

of Arkansas between October and November 2021. A total of 105 subjects participated in an

individual decision task implemented using Qualtrics. On average, including a $5 show-up fee,

subjects earned $26 for a session lasting around 45 minutes.

Subjects were endowed with $25 (on top of the show-up fee) that they could potentially lose

in the experiment. The experimental outcome was determined by decisions in four sets of tasks

played in the following order: (i) Blind Protection; (ii) Informed Protection; (iii) Belief Elicitation;

and (iv) Willingness to Pay Elicitation. Subjects took a quiz of understanding prior to each task;

the correct answer and an explanation were provided if a subject answered a question incorrectly.1

Each task consisted of 6 rounds, resulting in 24 total rounds. At the end of the experiment, one

of these 24 rounds is randomly selected as the payment round. The instructions can be found in

the appendix.

Blind Protection (BP). Subjects must decide whether to pay $5 to protect against an adverse

event: a random draw of a black ball. Subjects know the prior probability that a black ball is

drawn. A subject who draws a black ball will lose nothing if they chose to protect and $20 if

they did not. The prior probability of drawing a black ball across the 6 rounds is denoted as

p ∈ {0.05, 0.10, ..., 0.3}. The order was common for all the subjects and started at the lowest

probability. Subjects did not receive feedback on the decision’s outcome.

Informed Protection (IP). Similar to the BP task, subjects must make a protection decision

given the prior probability of drawing a black ball. Subjects learn a prior and signal’s accuracy.

Following Coutts (2019), we use a group of hinting gremlins to convey the signal’s accuracy, where

a randomly selected gremlin from a group provides a hint (mapping to a signal realization in the

model). The gremlin is one of three types: (i) honest; (ii) ”black-swamp” who always says that the

ball is black; and (iii) ”white-swamp” who always says that the ball is white. Figure 1 illustrates

how the different gremlin types were presented to the subjects. The composition of the group of

gremlins determines signal’s accuracy: a higher share of black(white)-swamp gremlins produces a

signal with higher FP (FN) rate. Subjects know the group composition, but do not know which

gremlin provides a hint in any particular round. The prior probability of drawing a black ball and

the composition of gremlins vary across the rounds.

1Incorrect quiz answers for the Informed Protection section resulted in subjects facing three additional multiple
choice questions. In our opinion, clear understanding of the Informed Protection task is essential for subsequent
tasks, hence the additional questions. Complete details of the comprehension questions are in the appendix.
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Figure 1: Signals Presentation

Belief Elicitation (BE). As in the IP task, subjects know the prior probability of drawing

a black ball and the composition of the group of gremlins providing hints. Instead of making a

protection decision, however, subjects are asked to estimate the probability that: (i) the ball is

black when the gremlin says that it is white; (ii) the ball is black when the gremlin says that it is

black.

To elicit incentive-compatible responses, we follow the stochastic version of the Becker-DeGroot-

Marshak mechanism developed by Grether (1992) and Holt and Smith (2009) but stated equiva-

lently in terms of losses rather than gains. Subjects submit their beliefs about the probability of

the adverse event µ ∈ [0, 1]. If µ is above some uniform random number r ∈ [0, 1], they lose $20

only if this event happens (i.e., a black ball is drawn). If r > µ, then they draw an independent

lottery that will lose $20 with probability r and 0 otherwise.2 Motivated by Danz, Vesterlund

and Wilson (2020), who find that providing a detailed explanation of payoffs can lower truthful

reporting, we instead explain that reporting one’s true belief µ maximizes their payoffs, and give

an example of payoff calculation under different reporting strategies.

Willingness to Pay Elicitation (WTPE). The WTPE task measures a subject’s willingness

to pay (WTP) for a signal. As before, subjects know the prior probability of drawing a black

ball and the composition of the group of gremlins giving hints. Unlike the IP task, subjects do

not automatically receive a hint, instead they provide their WTP for a hint by choosing a value

∈ ($0, $5) in $0.50 increments. The elicitation is incentive compatible: if a WTPE round is selected

as the payment round, a random price of a hint will be drawn. If that price exceeds the subject’s

WTP, they will play a BP round, otherwise the subject pays their WTP and plays an IP round.

2The benefit of this mechanism versus other probability elicitation mechanisms (e.g., quadratic scoring) is that
reporting truthfully is a dominant strategy regardless of risk preferences (Karni, 2009) as long as a subject’s
preferences adhere to probabilistic sophistication and dominance i.e., they rank lotteries based on their probabilities
only and prefer higher probabilities of higher payoffs.
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After the WTPE task, subjects answered a few demographic questions: gender, age, and

number of statistics courses they have taken. The payment task and the payment round were then

randomly chosen to calculate the subject’s payoff.

For tasks other than BP, subjects go through two different priors and three types of signals.

The order is such that subjects go consecutively over all three signal types starting from the honest

one for each prior. The order of priors and signals stays constant for each subject across tasks,

but can vary between subjects. Table 1 summarizes our treatments.

Table 1: List of Treatments

Gremlins composition
Prop. of black balls (p) Honest Black-eyed White-eyed FP rate FN rate
0.1, 0.2, 0.3, 0.5 2 0 0 0 0
0.1, 0.2, 0.3, 0.5 3 1 0 0.33 0
0.1, 0.2, 0.3, 0.5 3 0 1 0 0.33
0.1, 0.2, 0.3, 0.5 3 1 1 0.33 0.33
0.1, 0.2, 0.3, 0.5 5 1 0 0.2 0
0.1, 0.2, 0.3, 0.5 5 0 1 0 0.2
0.1, 0.2, 0.3, 0.5 5 1 1 0.2 0.2

4 Subject Decisions By Task

Decisions in the Blind Protection (BP), Informed Protection (IP), and Belief Elicitation (BE) tasks

measure determinants of WTP in our model. Protection choices in the BP task reveal subjects’

risk preferences with known probabilities. Choices in the IP task demonstrate how subjects use

signals given their characteristics. Finally, the BE task provides insight into subjects’ beliefs for

given signals. We briefly discuss patterns of subject decisions below. They suggest that subjects

understand these tasks reasonably well.

4.1 Blind Protection

Figure 2 plots the likelihood of protecting against the posterior probability of drawing a black ball

for the BP task, where the posterior is equivalent to the prior (the thick line), and in the IP task

(the thin line). On aggregate in the BP task, subjects’ likelihood of protecting increases in the

probability of an adverse outcome: only 13% subjects protect when the probability of a black ball

is 10% in contrast to 70% protecting when the probability is 30%.

At the individual level, BP responses indicate significant heterogeneity in risk preferences. For

approximately 70% of subjects (72/105), protection action increases monotonically in probability.
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The remaining 30% make at least one switch from protecting to not protecting and back, which is

inconsistent with EU maximization.3

Risk-neutral agents who maximize their expected utility should start protecting when the prior

exceeds 0.25, i.e., at the ratio of the protection cost to the potential loss ($5/$20). Many of our

subjects (24) start protecting at lower priors (0.05-0.15), indicating strict risk aversion. A smaller

group of subjects makes choices consistent with risk loving by protecting at a probability of 0.3 or

never.4

4.2 Informed Protection

Recall that, in the IP task, subjects not only know the prior but also receive a hint about the

ball color. Figure 2 shows that protection actions are increasing in the posterior probability of an

adverse event, though roughly 28% of subjects break monotonicity in their protection responses

with respect to posterior probabilities. This is approximately the percentage of non-monotonic

responses in the BP task. Breaking monotonicity here is not particularly surprising as subjects

are not directly given their posterior probabilities and may estimate them incorrectly. At the

individual level, we also find that the total number of times subjects protect in the BP task

significantly correlates with their likelihood of protection in the IP task conditional on posteriors,

but this explains only a very small part (<1%) of variation in the IP decisions.5

3That is, subjects do not protect for some treatments with posterior probability P while protecting for a posterior
probability P ′ < P . Inconsistency on risk preference measures is well known. Filippin and Crosetto (2016)
found that 17.1% of more than 6,300 subjects in 54 published papers made inconsistent switches on the Holt and
Laury (2002) paired-lottery measure where options are presented in increasing payoff order, which they are not
here. Among our switchers, however, 83% (24/39) skip only a single increment of the presented probability scale,
suggesting an inattention error.

4As a reference using a CRRA utility function, switching at the probability 0.1 corresponds to a coefficient of
relative risk aversion θ = 2, switching at 0.2 corresponds to θ = 0.57, and switching at 0.3 corresponds to θ = −0.54.

5We use a linear probability model to estimate this relationship, and while the coefficient on the total number
of protection choices is significant at the 1% level, the R2 only increases from 0.295 to 0.3.
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Figure 2: Average Protection Response

The bars show 95% confidence intervals for the mean proportion of subjects choosing protection at each
posterior probability.

Table 2 presents the average protection decisions by prior and signal type. The first three

columns indicate the signal’s characteristics and the hint provided. Column 4 shows the posterior

probability of a black ball averaged across all the treatments within a group, column 5 — the

subjects’ share of empirical protection responses, while column 6 presents the theoretical optimum

for a risk-neutral decision maker. Finally, column 7 presents the p-value for a test of equality

between empirical and theoretical protection responses.

Three observations emerge from the table. First, regardless of the signal’s FP and FN rates,

black hints substantially increase the likelihood of protection. Second, subjects’ protection deci-

sions deviate significantly from what is optimal for risk-neutral subjects in most treatments, as

evidenced by column 7. Subjects significantly overprotect when facing white hints (rows 1–4), while

significantly underprotecting when facing black hints without false positives (rows 5–6). Subjects

overprotect for black hints with false positives, though the difference is not statistically significant.

Third, we find deviations that cannot be explained by the expected utility maximization for

any degree of risk aversion. For example, consider rows 1 and 3: even though an increase in the

FP rate does not change the posterior (because the hint is white), the protection rate increases

by 6 percentage points (pp).6 Similarly, comparing rows 3 and 4, we see that introducing false

negatives to a signal that also generates false positives raises the protection rate increases to 56

percent — even though the average posterior probability given the signal’s characteristics is merely

6The difference is significant at 5%
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13 percent. As a benchmark, with no signal in the BP task, only 13 (32) percent of subjects choose

to protect when the probability is 10 (15) percent.

Table 2: Average Protection by Signal Type

Row

Signal Characteristics
Hint Posterior

Share
Protect

Share
Optimal

pFalse
Positive

False
Negative

(1) (2) (3) (4) (5) (6) (7)
(1) No No White 0.000 0.067 0.000 0.000
(2) No Yes White 0.100 0.333 0.000 0.000
(3) Yes No White 0.000 0.130 0.000 0.000
(4) Yes Yes White 0.131 0.564 0.121 0.000
(5) No No Black 1.000 0.846 1.000 0.000
(6) No Yes Black 1.000 0.841 1.000 0.000
(7) Yes No Black 0.550 0.833 0.870 0.355
(8) Yes Yes Black 0.483 0.886 0.871 0.685

Notes: The p-value in column 7 is for the test of equality between the theoretical prediction (column 6) and the observed
share of protection (column 5).

4.3 Belief Elicitation

Subject decisions in the IP task capture the use of signals in protection decisions, but decisions

reflect both risk preferences and (potentially erroneous) beliefs. The BP task can be used to

construct a measure of the former; the BE task to measure the latter.
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Figure 3: Errors in Bayesian Updating

(a) Error Distribution (b) Error v. Posterior

(c) Error Distribution, Certain Posterior (d) Error v. Posterior, Certain Posterior

(e) Error Distribution, Uncertain Posterior (f) Error v. Posterior, Uncertain Posterior

We define updating errors as the difference between the subjects’ elicited belief and the actual

posterior probability of drawing a black ball for a given signal. The left-hand column of Figure 3
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shows the distribution of the updating errors, while its right-hand column presents a scatter plot

of the elicited beliefs against the true posterior with a fitted line. Panel A indicates that beliefs

are still sensible despite errors. The distribution of updating errors is centered at 0, with roughly

one-half (51%) of errors concentrated within +/- 0.1 interval around zero. Overall, the correlation

between the elicited beliefs and the true posteriors was 0.748 (see Panel B for the scatter plot).

For some combinations of priors and signals, updating should be trivial and posteriors are

completely certain. Panel B plots such cases, which account for 56% of the sample and include:

(i) treatments with all-honest gremlins; and (ii) treatments with obviously irrelevant dishonest

gremlins (e.g., a group comprising of honest and white-swamp gremlins only announcing that the

ball is black — or vice versa). Reassuringly, 69% of reported beliefs are correct. About half of the

errors involve reporting a probability of one when it should have been zero.

Meanwhile, Panel C plots the remaining observations, i.e., those with uncertain posteriors. The

median error in Panel C is -0.12, with 90% of errors lying between -0.48 and 0.3, suggesting that,

on average, subjects overestimate the likelihood of adverse events for uncertain posteriors. The

correlation between beliefs and posteriors in this sub-sample falls to 0.571.7

Table 3: Average Updating Error by Signal Type

Row

Signal Characteristics
Hint Posterior

Updating
Error∗

pFalse
Positive

False
Negative

(1) (2) (3) (4) (5) (6)
(1) No No White 0.000 0.050 0.000
(2) No Yes White 0.100 0.122 0.000
(3) Yes No White 0.000 0.122 0.000
(4) Yes Yes White 0.131 0.218 0.000
(5) No No Black 1.000 -0.163 0.000
(6) No Yes Black 1.000 -0.279 0.000
(7) Yes No Black 0.550 0.039 0.130
(8) Yes Yes Black 0.483 0.048 0.021

Notes: The updating error is defined as Belief − Posterior. The p-value in column 6 is for the test of the
null hypothesis that the updating error in column 5 is equal to 0.

7The overall pattern of belief updating is consistent with the existing literature which shows that despite updating
in the correct direction, people tend to underreact both to the priors and to the signals. The effect of underweighting
priors — first noted in the psychology literature (Phillips and Edwards, 1966; Tversky and Kahneman, 1971;
Kahneman and Tversky, 1972) — is known as representativeness bias or base-rate neglect. Using the regression
approach of Grether (1980), we find both base-rate neglect and signal underweighting. Our estimates of these

parameters are significantly below one with α̂ = 0.43 β̂ = 0.25 (see Column 1 in A2). These values are within the
range found by the meta-analysis of Benjamin (2019) which calculates the average α̂ estimate to be around 0.22

(0.4 for incentivized studies only) and the average β̂ to be 0.6 (0.43 for incentivized) for studies (like ours) that
presented their signals simultaneously. Such experiments are known as bookbag-and-poker-chip experiments
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Table 3 summarizes how updating errors vary with the signal’s characteristics. We find that

subjects overestimate the probability of a black ball when receiving a white hint, which is consistent

with overprotection noted for the IP task. This upward bias for a white hint increases in both the

FP and FN rates of the signal. To illustrate, consider the change between rows 1 and 3, where

introducing a FP rate would not change the posterior because the signal realization is white. Yet,

subjects update their posterior upward, magnifying their updating error; we find a similar effect

for the introduction of the FN rate (row 1 vs. 2).

The updating bias for black signal realizations (hints), however, varies by information structure.

Subjects slightly underestimate the probability with a perfectly accurate signal, but introducing

FN rates exacerbates subjects’ underestimation. Rows 5 and 6 suggest that the introduction of a

FN rate without changing the posterior further reduces subjects’ beliefs. With non-zero FP rate,

subjects again overestimate the probability of a black ball. The difference in the updating errors

for black hints coming from FP-only (row 7) v. FP-FN signals (row 8) is negligible. The magnitude

of subjects’ adjustments to their beliefs was smaller than the actual change to the posteriors due

to the FP rates.

5 WTP and Signal Characteristics

5.1 Are Subjects Risk Neutral, Expected Utility Maximizers?

Hypothesis 1. Subjects’ WTPs for signals are equal to their value for risk-neutral agents.

Result 1. On average, there are no significant discrepancies between WTP and predicted value

for risk-neutral agents. When splitting by a signal type, a difference emerges only for signals with

both false-positive and false-negative rates.

Overall, the theoretical signal value for a utility maximizing risk-neutral subject (hereafter, the

risk-neutral WTP) in equation 2 is a useful benchmark of our subjects’ WTP. Figure 4 plots the

distribution of the differences between subjects’ WTP and this value. The distribution is centered

around 0, indicating that average choices do not fall far from the choices of a risk-neutral utility

maximizer. However, there is substantial variation: only 25% of reported WTP are within $0.50

of the risk-neutral signal value, and subjects overvalue signals by at least $1.5 in 22% of cases and

undervalue by at least $1.5 in 19% of cases. Introducing FP and FN rates does not increase the

range or variation of discrepancies, but introduces a long tail of positive discrepancies shifting the

average upward.
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Figure 4: Discrepancy (Observed WTP - Signal value) by Signal Type

(a) All signals (b) FP only

(c) FN only (d) Both FP and FN

Our comparisons in Table 4 also find no differences on average between the observed WTP

and the risk-neutral WTP for 3 out of 4 signal types: honest (i.e., perfectly accurate), FP-only,

and FN-only. For signals having both FP and FN rates, however, subjects’ reported WTP is

significantly higher than the risk-neutral WTP. Subjects’ overvaluations were similar for both low

and high priors. Note, that these signals also induce overprotection in the IP task. Additionally,

subjects tend to overpay for signals with positive FP rates when the prior is low (0.1 or 0.2), and

for signals with positive FN rates when the prior is high (0.3 or 0.5).

Table 4: Average WTP discrepancy (WTP-Value) by Signal Type

Priors Honest FN only FP only FP and FN
All priors -0.106 0.143 0.081 0.492***
Low priors -0.135 -0.209 0.465** 0.437**

High priors (>0.2) -0.077 0.496* -0.303 0.547**
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Hypothesis 2. Subjects’ preferences demonstrate equal sensitivity to costs generated by false-

positive and false-negative events.

Result 2. On average for our signal and sample structure, we cannot reject the hypothesis of equal

sensitivity. However, we observe significant heterogeneity with respect to priors: subjects tend to

overvalue false-negative costs for low probability events and overvalue false-positive costs for high

probability events.

To examine how the WTP responds to signal quality, we estimate the relationship between

WTP biases and signal characteristics with the following regression:

∆bis = β0 + β1FP + β2FN + εis

where ∆bis = (bis − b∗s) is the difference between the WTP of individual i for signal s and b∗s is the

risk-neutral WTP; FP (FN) is the false positive (false negative) cost. Note here that false positive

or false negative costs are functions of both the rates and the costs of the consequences of those

rates. For example, a high false-negative rate imposes fewer costs when priors are low because

the adverse outcome is already unlikely, whereas high false-negative rates carry substantial costs

when the prior probability of the adverse outcome is high. All specifications include subject fixed

effects, with standard errors clustered at the subject level.

Table 5 reports the results of our regression. If subjects are risk-neutral expected-utility-

maximizers, we expect all coefficients to be jointly and individually insignificant. Instead, column

1 shows positive and statistically significant coefficients for both FP and FN costs with highly

significant model’s F-test. In other words, subjects deviate by overpaying for inaccurate signals.

The risk-neutral model predicts that subjects should value the marginal costs of false-negative

and false-positive events symmetrically. Table 5 shows that the coefficient on FN costs is slightly

larger, but we cannot reject the hypothesis that the two coefficients are equal. However, as we will

show, this equivalency breaks down when considering specific priors.

5.2 Risk Preference and Belief Accuracy

Our baseline estimation in column 1 indicates significant deviations from the behavior of a risk-

neutral agent as predicted by the model. The positive and significant coefficients suggest that these

deviations are increasing in FP and FN costs. In other words, as signal quality deteriorates (with

increasing FP or FN rates), our subjects do not reduce their valuation of the signals as quickly as

a risk-neutral agent would.

Because our benchmark model assumes both perfect updating and risk neutrality, the deviations

could occur through two channels. First, Proposition 2 suggests that risk preferences can influence

18



Table 5: Deviations from Signal Value (WTP - Value) and Signal Characteris-
tics

All
Prior

{.1, .2} {.3, .5}
(1) (2) (3) (4) (5)

FP costs 0.231 0.316 0.615 0.800 0.204
(0.126) (0.195) (0.252) (0.239) (0.488)

FN costs 0.319 0.425 0.426 0.150 0.407
(0.070) (0.118) (0.127) (0.279) (0.106)

Risk-averse × FP costs -0.297 -0.429 -0.491 -0.707
(0.291) (0.352) (0.385) (0.679)

Risk-averse × FN costs -0.410 -0.367 -0.321 -0.264
(0.174) (0.175) (0.343) (0.151)

Risk-loving × FP costs 0.053 -0.084 -0.431 0.253
(0.339) (0.413) (0.449) (0.718)

Risk-loving × FN costs -0.016 0.027 0.083 0.035
(0.166) (0.192) (0.387) (0.142)

Constant -0.182 -0.191 -0.443 -0.219 -0.332
(0.083) (0.080) (0.135) (0.179) (0.191)

R2 0.480 0.492 0.504 0.739 0.753
Prob>F 0.0001 0.0023 0.0041 0.0002 0.0003
Obs 624 624 624 312 312

Risk-Averse Subjects:
False Positive 0.019 0.186 0.309 -0.503
se (0.216) (0.246) (0.302) (0.472)
p-value [0.928] [0.451] [0.309] [0.289]

False Negative 0.014 0.060 -0.171 0.143
se (0.127) (0.120) (0.200) (0.108)
p-value [0.910] [0.621] [0.393] [0.189]

Risk-Loving Subjects:
False Positive 0.369 0.531 0.369 0.457
se (0.277) (0.328) (0.381) (0.526)
p-value [0.186] [0.109] [0.334] [0.388]

False Negative 0.409 0.453 0.232 0.442
se (0.117) (0.143) (0.267) (0.094)
p-value [0.001] [0.002] [0.387] [0.000]

Subject FE Yes Yes Yes Yes Yes
Inaccurate Belief Interactions No No Yes Yes Yes
Prior Probability FE No No No Yes Yes

Notes: Standard errors in parentheses (clustered at the subject level). In the bottom
panels, we also test whether the total coefficient value (baseline+interaction) are
different from zero. 19



the sensitivity of WTP to FP and FN rates. Second, systematic biases during updating can also

cause deviations.

We find that risk preferences affect the sensitivity to signal’s quality, but fall short in explaining

WTP systematic biases reported above. We use data from the BP task to categorize subjects by

their risk preference. We classify all the subjects with internally consistent BP choices into three

categories: risk averse, risk neutral, and risk loving.8

Column 2 explores the heterogeneity of subject responses to FP and FN costs by their risk

preferences, with risk-neutral as the default category. The WTP discrepancies of both risk-neutral

and risk-loving subjects increase with FP (statistically insignificant) and FN costs — suggesting

that they do not downward-adjust their WTP enough to account for lower quality signals. In

contrast, the WTP discrepancies of risk-averse subjects show little sensitivity to FP and FN costs.

Subjects’ under-reaction to deteriorating signal quality remains even after we further control

for their ability to Bayesian update. We use data from the BE task to construct a measure

of subjects’ (posterior) belief accuracy.9 Column 3 presents the most flexible specification that

controls for belief accuracy and risk preference by including triple interactions of belief accuracy,

risk preference, and signal characteristics. The baseline group is the group of risk-neutral subjects

with relatively accurate beliefs. We find a lower sensitivity to FP costs for risk-neutral subjects

with accurate beliefs and very little change to the corresponding sensitivity to FN costs. This

indicates that even relatively accurate Bayesians do not downward-adjust their WTP enough to

increasing FP or FN costs.10

5.3 Heterogeneity by Prior

We motivate our experiment with a real-world problem of designing warning systems — often for

events with low probabilities. With a low prior, the default action of risk-neutral subject would

be not to protect, and vice versa with a high prior. The signal would help risk-neutral subjects

decide whether to keep the default action or to switch. We split the priors in two groups using

the threshold of 0.25 (= protection cost/potential loss), and we incorporate prior-probability fixed

effects to the aforementioned flexible specification.

8We classify most subjects to risk-averse, risk-loving or risk-neutral based on the total number of protection
choices made in the BP task, with 2 and 3 choices corresponding to risk-neutrality (protecting starting from 0.2 or
0.25). Subjects that make more than one inconsistent choice in BP are included as their own category.

9We calculate a belief error as the absolute value of the difference between the subject’s belief and the true
posterior probability and then average these errors across all the decisions with identical priors, false positive and
false negative rates. A subject’s posterior belief for a decision is defined as accurate if its error is less than the
median error across all the subjects making the same decision.

10Aside from these theoretically motivated individual differences, we investigate several other characteristics.
Heterogeneity is not driven by demographic characteristics (e.g., age, gender) or prior statistical coursework. The
complete set of results are in Appendix A Table A4.
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Column 4 of Table 5 presents the results for low-prior WTPE tasks (10% and 20%). With low

priors, deviations from the risk-neutral WTP increase with FP costs: subjects overvalue signals

that would induce them to overprotect. This overvaluation is similar for different risk preference

profiles. Column 5 presents the results for high-prior WTPE tasks. With high priors, the deviations

of risk-neutral and risk-loving subjects from the risk-neutral WTP increase with FN costs. By not

reducing their WTP enough to account for the increasing FN rates, subjects overvalue signals that

would induce them to underprotect.

In summary, with low priors, subjects do not reduce their WTP enough to account for the

deteriorating signal quality captured by the false-positive costs. In contrast, with high priors, they

underreact to false-negative costs. In practice, most warning systems are designed for low proba-

bility events. In such cases, users would tend to overpay for signals with high false-positive costs

and underpay for signals with high false-negative rates. For example, they would prefer a smoke

alarm that never misses fire incidents, even when its expected cost of false alarms is high. Risk

preferences affect this pattern with risk-averse subjects moving closer to a risk-neutral benchmark,

but most interaction coefficients are not statistically significant despite large magnitudes.

6 Discussion

Subjects’ underreactions to false-positive (false-negative) costs for low (high) priors present a

puzzle. These behaviors are inconsistent with our risk-neutral model: Equations 3 and 4 in Section

2 suggest that WTP should respond more to FP rates (relative to FN rates) for low priors and

vice versa for high priors. As stated earlier, for a given FN rate, false-negative events are much

less likely with low priors and hence impose lower costs on the agent. As priors increase, FN rates

become more salient while FP rates become less salient. Instead, our subjects react very similarly

to FP and FN rates for both low and high priors. The divergence between our subjects’ WTP and

the risk-neutral WTP explains changing signs on FP and FN costs in the previous regressions of

WTP differences.
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Figure 5: Theoretical and Empirical WTP Sensitivities to FP and FN rates

Figure 5 illustrates this puzzling behavior. This figure plots estimates from the regression of

reported WTP — instead of its deviation from the risk-neutral WTP — on FP and FN rates. We

find that the sensitivities of subjects’ WTP to both FP and FN rates increase with priors and that

the change occurs relatively smoothly, and the two sensitivities are also surprisingly close to each

other.11

We consider four candidate explanations for these puzzling results: risk preferences, anchoring,

valuing non-instrumental information, and finally a failure to distinguish how FP and FN error

rates ought to affect calculated posteriors differently.

Risk Preferences. Our evidence suggests that risk preference cannot explain this behavior. We

test the risk preference hypothesis using subjects’ BP choices. Columns 4 and 5 of Table 5 already

show that, even after controlling for subjects’ risk preferences, the coefficients on FP and FN costs

remain very different for low and high priors. We augment this analysis in Appendix Table A5

by explicitly testing for interactions between risk-preferences, priors, and FP and FN rates. We

find that these interactions are mostly insignificant, with the exception of interactions between FN

rates and risk aversion for some specifications. The heterogeneity largely remains after controlling

for risk preferences, but the interaction between high priors and FP rates becomes insignificant.

Anchoring. The evidence also does not support the hypothesis that subjects anchored on pre-

vious priors. Each subject goes through two sets of treatments with two different priors in a fixed

11We cannot reject the hypothesis that two sensitivities are equal to each other for any of the priors.

22



order, so anchoring could occur. We find, however, that most subjects (92 out of 104) change

their decisions when going from one prior to another, and the average belief error in the BE task is

actually lower for the second set of priors rather than the first, which suggests that changing priors

does not make subjects more confused. Most importantly, we do not see statistically significant

differences between FP and FN coefficient estimates even if we limit our attention only to the first

priors in each sequence.12

Non-instrumental information. There is evidence in the literature of people valuing ”non-

instrumental information” that does not affect their decisions. For example, Eliaz and Schotter

(2010) find that subjects are willing to pay to know the probability of their choice being correct even

if this information cannot affect their choice. Similarly, Ganguly and Tasoff (2017) document that

most people are willing to pay a small amount to know their pre-determined experimental payoffs

at the beginning of the experiment rather than at the end. Most information in our experiment is

instrumental by design, i.e., it informs their choices, and indeed enters into subjects’ decisions as

evidenced by choices in the IP task. Nonetheless, many subjects have a positive WTP for signals

that cannot affect their IP decisions (159 out of 624 total choices). It is therefore plausible that

the reported WTPs include some non-instrumental components.

Preferences for non-instrumental information cannot, however, provide a full explanation of our

results, mainly because there is no time delay between receiving a signal and learning the outcome.

If the WTP task round is selected as a payment round, the subject receives a signal, chooses an

action, and then immediately learns their payoffs. Hence, there is practically no window for subjects

to experience any anticipatory feelings that the literature assumes to be the standard causal

mechanism behind the demand for non-instrumental information. Additionally, the closeness of

coefficients for FP and FN rates also seems a priori implausible based only on the non-instrumental

information value story because, in contrast to our next explanation, no theory of preferences for

non-instrumental information suggests the effects should be so similar to one another.

Failure to distinguish between FP and FN. Instead, we argue that subjects’ observed

behaviors arise from treating FN and FP as the same thing. Subjects’ own proffered explanations

motivate our consideration of this possible mechanism. At the end of the experiment, we asked

subjects to explain to us how they made their protection choices. Out of 105 subjects, 39 refer to

the percentage of dishonest gremlins as their rationale for choosing protection. For example:

� “my strategy for this task was to only buy protection if there was a white or black gremlin

and not if there was a truth gremlin”

12The first 3 WTP treatments use either 0.1 or 0.2 as the prior (depending on the treatment), so there is no
anchoring on the previous prior or something special about a particular prior.
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� “If there were only honest gremlins then I never protected but even if there was one white-

swamp gremlin or one black-swamp gremlin then I payed for protection.”

Among the other 66 subjects, some may use this heuristic without describing it.13 The similarity

of the coefficient estimates for FP and FN rates for each prior as reported in Figure 5 is consistent

with these statements. If subjects neglect the difference between FP and FN risks when choosing

their WTP, it would explain both the coefficients’ similarity and their lack of variation with respect

to priors. Indeed, if subjects treat FP and FN rates the same and consider only the total proportion

of false signals, they would assign equal weights to each of them, and the best fit line of signal’s

value with the respect to the sum of FP and FN rates should be relatively flat because priors affect

FP and FN costs in opposite ways.14

We can test this hypothesis using choices from the BE and IP tasks where subjects face im-

perfect signals. If subjects systematically neglect the difference between FP and FN rates, we

expect to find the pattern of unexplained reaction to FP and FN rates in cases when they do not

affect the posterior. Namely, subjects would show sensitivity to FP rates when the signal is white

and sensitivity to FN rates with black signals. This happens because some subjects react to FP

rates as if they are FN rates, and vice-versa. If present, this pattern cannot be explained by any

distribution of risk preferences or by anchoring on previous priors.

Table 6 presents the results from linear regressions of updating error, i.e., actual posterior -

reported belief, on FP and FN rates by signal color with individual fixed effects to control for

updating biases. Consistent with our conjecture, we observe that the FP rate–the fraction of the

group of gremlin that are black swamp gremlins who always say black–has a significant positive

effect on the error when the signal is white, and that FN rate–the fraction of the group of gremlin

that are white swamp gremlins who always say white–has a significant negative effect when the

signal is black.

To further explore this hypothesis, in Table 7, we regress IP decisions on FP and FN rates and

flexible controls of both posteriors and reported beliefs:15

Prob(sij = 1) = αi + β1P10 + β2P01 + Z(Pij) + Z(µij) + ϵij

Here sij is the protection decision of subject i in treatment j, αi is subject FE, P10, P01 are FP

and FN rates, and Z(Pij) and Z(µij) are the splines of FP or FN rates and reported beliefs µij to

control for these variables in a flexible way. Each spline is a function Z(x) which is just linear x+C

within one interval, and constant everywhere else. The splines are constructed so that their linear

13The text of all responses are in the appendix.
14The equality of coefficients on FP and FN rates is a necessary prediction of this explanation, but can emerge

only by chance with (some) heterogeneous risk preferences.
15Given that the true functional form is unknown, we use a linear probability model to get unbiased coefficient

estimates.
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Table 6: Updating Errors in BE Task

All
Signal Received

White Black
(1) (2) (3)

FP rate 0.600 0.292 0.908
(0.057) (0.063) (0.102)

FN rate 0.011 0.273 -0.251
(0.053) (0.061) (0.084)

Observations 1248 624 624
Adjusted R2 0.146 0.415 0.521

Subject FE Yes Yes Yes

Notes: Standard errors in parentheses (clustered at
the subject level).

intervals cover the whole domain of probabilities and beliefs [0, 1].16 Columns 1 and 2 include

only the flexible controls of the true posteriors. Columns 3 and 4 add further flexible controls to

account for subjects’ (often incorrect) beliefs, inferred from their BE responses.

Columns 1 and 2 show that, even conditional on posterior and subject FEs that account for risk

preferences, IP responses are still affected by FP and FN rates. For a white hint, FP and FN rates

increase the tendency to overprotect while the FP rate has an opposite effect with comparable

magnitude but without statistical significance for a black hint. Hence the first prediction of a

conjecture of indiscriminate FP and FN rate use holds: FP rates increase protection when the

signal realization is white conditional on the posterior. The effect holds if allowing for heterogeneity

of sensitivities to FP and FN rates with respect to priors (Column 2), though the effect of the FN

rate for black hints is small in magnitude and not statistically significant at conventional levels.

Adding flexible controls for subjects’ beliefs reduces the coefficient magnitude on FP rate for white

hints (Columns 3 and 4), but the coefficients still remain significant. This indicates that while

beliefs partially contribute to these protection anomalies, they cannot explain them completely.

Overall, we observe a striking uniformity in sensitivity of WTP to both false-positive and

false-negative rates that cannot be explained by risk preferences or anchoring. This pattern is,

however, consistent with subjects neglecting the difference between false-positive and false-negative

signals, a behavior that is supported by subjects’ explanations of their decision making and the

odd sensitivities to false-positive and false-negative rates in other treatments in which they do not

affect posterior probabilities.17

16We use Stata mkspline command to create 5 splines z1(x), z2(x), ..z5(x) of initial variable x over the range
[0, 1] such that zk(x) = min[0, x − xk−1, xk − xk−1] with xk being equally spaced knot values. Splines account for
potential nonlinear effects of posteriors and beliefs on protection decision with limited effect on degrees of freedom.

17This pattern is consistent with greater bias in belief elicitation when subjects have to engage in contingent
reasoning versus smaller belief biases when eliciting responses after presenting a signal results, as Aina, Amelio
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Table 7: Informed Protection Response

(1) (2) (3) (4)
FP rate x (S=White) 0.472 0.573 0.284 0.356

(0.140) (0.157) (0.142) (0.156)
FN rate x (S=White) 0.611 0.565 0.205 0.176

(0.219) (0.223) (0.224) (0.237)
p>0.2 0.066 0.055 0.043 0.037

(0.024) (0.028) (0.024) (0.028)
S=Black 0.426 0.473 0.293 0.319

(0.170) (0.195) (0.170) (0.192)
FP rate x (S=Black) -0.183 -0.116 -0.307 -0.256

(0.502) (0.506) (0.495) (0.498)
FN rate x (S=Black) 0.050 -0.042 -0.003 -0.061

(0.102) (0.117) (0.109) (0.123)
FP rate x (p>0.2) -0.160 -0.113

(0.136) (0.144)
FN rate x (p>0.2) 0.264 0.165

(0.163) (0.139)
N 1224 1224 1224 1224
Pseudo R-squared 0.547 0.549 0.574 0.575
Log-likelihood -382.728 -380.699 -359.806 -358.904

Subject FE Yes Yes Yes Yes
Flexible controls for:
Posterior Yes Yes Yes Yes
Beliefs No No Yes Yes

Notes: Coefficients are average marginal effects. Standard errors in parentheses
(clustered at the subject level).
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7 Conclusion

We study how error characteristics of warning signals affect user’s valuations for warning sig-

nals. While the risk-neutral benchmark model does a good job of describing average elicited

willingness-to-pay, it masks an important underlying heterogeneity. Relative to the risk-neutral

WTP, individual valuations of warning signals inadequately adjust for worsening signal quality

from false-positive (false-negative) costs for low (high) prior probability events. These deviations

cannot be explained by either risk preferences or belief-updating accuracy. Instead, they seem to

be consistent with a decision heuristic where subjects do not distinguish between false-negative

and false-positive errors.

Understanding the source of this asymmetry can improve social efficiency. As we find here,

people overvalue signals with excessive false alarms for a typical case with low-probability events.

In some cases, individuals may not incur the full cost from false positive signals. For example, the

cost of medical overtreatment from tests with high false positives may be an externality absorbed by

the healthcare system. Similarly, first responders may be required by law to respond to automatic

fire alarms installed in commercial buildings resulting in excess costs borne by taxpayers when

false positive rates are high. Having a better understanding of the sources of these deviations can

improve designs of effective signals and interventions to help users better understand the value of

probabilistic warning signals.18

and Brütt (2023) found. This result implies that decisions to acquire information, such as decisions made in
our experiment where subjects determining their WTP have to reason through contingencies, might suffer from
persistent inherent biases. Indeed, we find that subjects commit reasoning errors which reduces the correlation
between their WTP for a signal and its usefulness for decreasing expected potential costs.

18For example, evidence to confirm that this bias comes from confusing different types of probabilistic errors can
motivate interventions to improve how information about these errors is presented. Studies on Bayesian updating,
for instance, show that medical professionals make better decisions if the information on medical tests is presented
in the form of expected frequencies rather than a tuple of prior conditional probabilities (Hoffrage et al., 2015;
McDowell and Jacobs, 2017).
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A Tables

Table A1: Demographic Characteristics of Subjects

All p ∈ {0.1, 0.3} p ∈ {0.2, 0.5}
N % N % N %

Male 43 41 22 41 21 41
Age>23yrs old 14 13 6 11 8 16
Students 88 84 46 85 42 82
Had statistics classes 63 60 37 69 26 51
Total 105 100 54 100 51 100

Table A2: Error Decomposition

(1) (2) (3) (4) (5) (6)
OLS FE OLS FE OLS FE

Prior 0.246 0.202 0.175 0.191 0.140 0.040
(0.044) (0.051) (0.056) (0.076) (0.062) (0.063)

Signal 0.430 0.430 0.327 0.327 0.539 0.539
(0.069) (0.069) (0.103) (0.103) (0.101) (0.101)

Good quiz × Prior 0.143 0.021
(0.086) (0.102)

Good quiz × Signal 0.193 0.193
(0.138) (0.138)

Stat. class × Prior 0.162 0.264
(0.085) (0.094)

Stat. class × Signal -0.166 -0.166
(0.134) (0.135)

Observations 280 280 280 280 280 280
Adjusted R2 0.31 0.31 0.33 0.32 0.32 0.32

Notes: Decomposition works only for imperfect signals, hence the table excludes the responses
to certain signals. Standard errors in parentheses (clustered at the subject level).
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Table A3: Informed Protection Response: Logit with Flexible Control for Posteriors

(1) (2) (3) (4)

FP rate 0.365 0.472 0.593 0.573
(0.111) (0.140) (0.147) (0.157)

FN rate 0.168 0.611 0.150 0.565
(0.093) (0.219) (0.098) (0.223)

p>0.2 0.026 0.066 0.047 0.055
(0.017) (0.024) (0.026) (0.028)

S=Black 0.004 0.426 -0.023 0.473
(0.063) (0.170) (0.067) (0.195)

FP rate x (S=Black) -0.655 -0.690
(0.472) (0.470)

FN rate x (S=Black) -0.561 -0.608
(0.267) (0.278)

FP rate x (p>0.2) -0.293 -0.160
(0.129) (0.136)

FN rate x (p>0.2) 0.084 0.264
(0.155) (0.163)

Observations 1248 1224 1224 1224
Adjusted R2

Notes: Specifications include flexible controls of posterior probability.
The table reports average marginal effects, includes subject FE, errors
are clustered by subject. Standard errors in parentheses.
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Table A4: WTP minus Value of Information: Demographic Determinants

(1) (2) (3) (4) (5) (6)

FP costs 0.283 0.352 0.117 0.215 0.248 0.291
(0.176) (0.180) (0.200) (0.207) (0.141) (0.142)

FN costs 0.322 0.247 0.395 0.303 0.303 0.249
(0.096) (0.090) (0.111) (0.104) (0.076) (0.068)

Male -0.193 -0.157
(0.315) (0.404)

Male × FP costs -0.153 -0.193
(0.244) (0.248)

Male × FN costs 0.079 0.114
(0.144) (0.127)

Stat. class -0.240 -0.142
(0.324) (0.435)

Stat. class × FP costs 0.198 0.124
(0.259) (0.266)

Stat. class × FN costs -0.083 -0.023
(0.146) (0.133)

>23 yrs -0.366 -0.647
(0.400) (0.372)

>23 yrs × FP costs -0.068 0.024
(0.303) (0.345)

>23 yrs × FN costs 0.350 0.277
(0.212) (0.209)

Constant -0.126 0.391 -0.058 0.419 -0.157 0.397
(0.205) (0.266) (0.257) (0.361) (0.171) (0.221)

Prior dummies No Yes No Yes No Yes
Observations 624 624 624 624 624 624
Adjusted R2 0.05 0.21 0.05 0.21 0.05 0.21

Notes: Standard errors in parentheses (clustered by subject).
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Table A5: WTP minus Value of Information: Risk Aversion and Sensitivity to FP and FN Costs

(1) (2) (3) (4) (5)
FE FE

p>0.2 -0.094 -0.110 -0.041 -0.127 -0.058
(0.189) (0.189) (0.286) (0.188) (0.283)

FN costs -0.229 -0.442 -0.327 -0.385 -0.360
(0.131) (0.232) (0.239) (0.214) (0.217)

p>0.2 × FN costs 0.716 0.977 0.889 0.949 0.914
(0.104) (0.190) (0.191) (0.175) (0.177)

FP costs 0.558 0.690 0.780 0.652 0.672
(0.118) (0.177) (0.188) (0.192) (0.191)

p>0.2 × FP costs -0.933 -0.879 -0.899 -0.863 -0.910
(0.182) (0.299) (0.337) (0.299) (0.322)

Risk-loving × p>0.2 × FN costs 0.037 -0.383 -0.059 -0.276
(0.145) (0.249) (0.151) (0.238)

Risk-averse × p>0.2 × FN costs -0.245 -0.279 -0.372 -0.198
(0.159) (0.242) (0.168) (0.252)

Inconsistent × p>0.2 × FN costs -0.074 -0.181 -0.066 -0.297
(0.174) (0.433) (0.160) (0.352)

Risk-loving × p>0.2 × FP costs -0.287 0.097 0.179 0.259
(0.385) (0.473) (0.552) (0.477)

Risk-averse × p>0.2 × FP costs -0.323 0.002 -0.520 0.029
(0.370) (0.483) (0.453) (0.461)

Inconsistent × p>0.2 × FP costs 0.108 -0.210 -0.480 -0.372
(0.681) (0.464) (0.523) (0.473)

Full risk pref interactions No No Yes No Yes
Observations 624 624 624 624 624
Adjusted R2 0.08 0.07 0.07 0.42 0.42

Notes: Standard errors in parentheses (clustered by subject).
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B Proofs

B.1 Proposition 1

Proof. If protection costs are low enough c < πL than the risk-neutral decision-maker should always

protect without a signal:

U = max[π(Y − L) + (1− π)Y, Y − c] = Y − c

It means that a strictly risk-averse decision-maker with a utility function u() should also protect:

πu(Y − L) + (1− π)u(Y ) < u(π(Y − L) + (1− π)Y ) = u(Y − c)

Then denote stochastic payoff with a signal as X so that expected utility with a signal is Eu(X − b)

where b is the willingness-to-pay solving:

Eu(X − b) = u(Y − c)

Let b0 be the willingness-to-pay for a risk-neutral decision-maker. By Jensen’s inequality:

Eu(X − b0) < u(EX − b0) = u(Y − c) = Eu(X − b)

Because expected utility with a signal is a decreasing function of b0 we obtain b > b0.

B.2 Proposition 2

Proof. Use the mean value theorem to rewrite the sensitivity as:

db

dP01
= −πu′(ζ)(L− c)

E[MU ]
, ζ ∈ (Y − L− b, Y − c− b)

Now let X denote a (random) payoff of the agent with a signal. A risk-averse decision-maker puts a

positive value on the signal only if its expected payoff is higher than the certain payoff with full protection:

EX > Y − c − b. If an agent is imprudent (u′′′ < 0) then u′(·) is a strictly concave function and hence

E[MU ] ≡ E[u′(X)] < u′(EX) by Jensen inequality. Next, u′ being a strictly decreasing function due

to strict risk aversion and EX > Y − c − b: u′(ζ) > u′(Y − c − b) > u′(EX). Hence u′(ζ)
E[MU ] > 1 and

db
dP01

< −π(L− c).

However, risk aversion can both increase and decrease subject’s sensitivity to false-positive rates

depending on the utility function curvature and signal’s characteristics. Intuitively, an expected marginal

utility of a strongly risk-averse subject with an imperfect signal can be lower than the average slope of

the utility function between (Y − c − b) and (Y − b) which reduces sensitivity to false-positive rates. It

can also be higher if either the signal is good or the curvature is small. We can only say that it is very
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likely that for low protection costs and small priors π (leading to no automatic blind protection) the ratio

of sensitivities to FP rates over FN rates should be lower for risk-averse subjects.

B.3 Proposition 3

Proof. The proof is approximate and relies on Taylor expansion to measure the effect of risk aversion

on sensitivities to false-positive and false-negative rates. Start by rewriting the equilibrium condition for

willingness-to-pay as the expected sum of utility differences:

P (0, 0)(u(Y − b)− u(Y )) + p(0, 1)(u(Y − b− L)− u(Y − L)) + P (1, 0)(u(Y − c− b)− u(Y ))+

+P (1, 1)(u(Y − b− c)− u(Y − L)) = 0
(7)

Here, P (x, y) is a shorthand for the probability of an event that the signal equals x and the state

equals y. Next, we expand the utility differences of u(Y − b)− u(Y ), u(Y − c− b)− u(Y ) as Taylor series

around Y and u(Y − L− b)− u(Y − L) difference around Y − L to get the following equation:

P (0, 0)[u′(Y )(−b) + o(b)] + p(0, 1)[u′(Y − L)(−b) + o(b)] + P (1, 0)[u′(Y )(−c− b) + o(c+ b)]+

+P (1, 1)[u(Y )− u′(Y )(b+ c) + o(b+ c)− u(Y − L)] = 0
(8)

Then we drop the terms o(b), o(b+ c) which we expect to be small enough to neglect to obtain:

P (0, 0)u′(Y )b+ P (0, 1)(u′(Y ) + [u′(Y − L)− u′(Y )])b+ P (1, 0)u′(Y )(c+ b)+

+P (1, 1)(−u′(Y )(b+ c)− (u(Y − L)− u(Y )) = 0
(9)

Now we can express the equilibrium (approximate) WTP b as:

b =
P (1, 1) (u(Y )−u(Y−L))

u′(Y ) − P (S = 1)c

D

Where the denominator D ≡ 1 − P (0, 1)
(
(u′(Y )−u′(Y−L))

u′(Y )

)
. Now we remember that P (1, 1) ≡ πP11 =

π(1− P01), P (S = 1) = π(1− P01) + (1− π)P10 and take derivatives of equilibrium (approximate) WTP

b with respect to false-positive and false-negative rates:

db

dP10
= −(1− π)c

D

db

dP10
= −π

 (u(Y )−u(Y−L))
u′(Y ) − c

D
−

P (1, 1) (u(Y )−u(Y−L))
u′(Y ) − P (s = 1)c

D2

 (u′(Y )− u′(Y − L))

u′(Y )


For a strictly risk-averse subject the sensitivity to false-positive rates should be lower than for a risk-

neutral one because u′(Y )−u′(Y −L) < 0 by decreasing marginal utility leading to D > 1. The opposite

is true for strictly risk-loving subjects. It is hard to say something more specific about the sensitivity to
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false-negative rates.

Dividing the sensitivity to FN rate to the sensitivities of FP rate, we also obtain that this ratio is

greater than 1 for strictly risk-averse subjects and less than one for strictly risk-loving ones.

db/dP01

db/dP10
=

π

(1− π)

(u(Y )− u(Y − L))

u′(Y )
− c+

(P (1, 1) (u(Y )−u(Y−L))
u′(Y ) − P (s = 1)c)

D

(u′(Y )− u′(Y − L))

u′(Y )


Note that the corresponding equation for the risk-neutral decision-maker puts the ratio of sensitivities

to:
db/dP01

db/dP10
=

π

(1− π)
[L− c]

Hence the question of comparison of two ratios is equivalent to the question of the sign of the following

inequality:

(u(Y )− u(Y − L))

u′(Y )
+

(P (1, 1) (u(Y )−u(Y−L))
u′(Y ) + P (s = 1)c)

D

(u′(Y − L)− u′(Y ))

u′(Y )
>< L

However note that the first component in the left-hand sum is already greater (u(Y )−u(Y−L))
u′(Y ) > L for

any strictly risk-averse decision-maker by a mean value theorem. Risk aversion also makes the second

component positive as u′(Y − L)− u′(Y ) < 0 and P (1, 1) (u(Y )−u(Y−L))
u′(Y ) + P (s = 1)c > P (1, 1)L− P (s =

1)c > 0 is also positive as it equal the expected savings from using a signal. Hence the LHS is greater

than the RHS L leading to the ratio of sensitivities to be greater than for a risk-neutral decision-maker.

The same argument applied in reverse will show that for a strict risk-loving decision-maker the ratio of

sensitivities will be lower.
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C Subjects’ Explanations

The list of responses to the question ”Please explain the strategy you used for Task 2 (Informed Protection)? This

is the task in which you see a hint and when decide to protect or not.”:

1. if the hint was favorable not protection and vice versa

2. I always bought protection unless I was certain that I didn’t need it (i.e. both gremlins were honest or it

wasn’t possible to get the black/white gremlin)

3. I trusted honest golems fully, and did not put much stock in the swamp golems.

4. my strategy was to just look at what the odds were

5. I looked at the percentages of white and black balls and made my guess off of that. Also, there was no big

harm in buying protection, and there was a lot of harm if you did not buy protection and got a black ball.

6. I trusted my instinct.

7. If the entire panel of gremlins was honest and they told me that the selection was white, I did not buy

protection, since I could be certain that I would not lose money. In any other scenario, I bought protection.

In my case, better to guarantee a $25 return every time than risk $20 for a $5 reward.

8. if it is an honest one, i don’t need to buy informed protection cuz i can’t trust its hint.

9. I think the gremlins were confusing, but if you see how many gremlins were. Then from that how many of

each type where and what they say, after that you based that to the actual percentage of balls you get close

to the answer.

10. I am a little bit more risky so I chose to not get protection if any of the monsters said it was white because I

felt the probability of one of the honest ones getting picked was higher and if they said it was black I bough

protection.

11. i used probablity and if the odds were more in favor i would mae a decision based on that and the ball

probabilty color

12. If the hint was from one of the honest gremlins then I didn’t choose to protect because they could only tell the

truth. If there were any just black or just white gremlins then I decided to protect because the information

they give isn’t helpful

13. See the quantity of hints and the percentage of drawing the colors of the balls.

14. I would calculate the probability that the gremlins were right. So in task two, I already did task 3. Like if

there were two black/white gremlins, I would add the probability that they were right to the certainly that

the honest gremlin was right.

15. I would see what the probability that they are telling the truth is and then see if they were saying black. if

no one was the black swamp monster then I knew it was black and therefore it would be 100%

16. I looked at the box of balls and the box of gremlins. If the gremlins were honest or white, I would not

use protection for a white ball. If the ball was black I would sometimes take my chances depending on the

amount of white and black balls. If they were honest or black, I would use protection for a black ball. If the

ball was white, I would not use protection since there were mostly honest gremlins.

17. I weighed the cost of loosing money and percentage difference with that chances of getting a white ball.

18. I weighed my odds. I knew they were in my favor.
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19. When I paid attention to the composition of the box and saw the gremlins, that helped to inform my decision

on whether to buy protection. For example, if I saw the box had equal numbers of both black and white ball

and two honest gremlins were there, I did not buy protection. When I saw a box with a larger amount of

black than white balls and had a white-swamp gremlin with four honest gremlins, I opted to buy protection.

20. I would the probability of one of the balls being picked. If the chances were not likely than I would not

protect it.

21. I looked at what percentage of gremlins were honest and used that info in my decisions.

22. Instinct and possibility of either white or black being picked

23. I took protection when there was a higher chance of drawing out black balls.

24. If all glimpses are honest, then choose not to protect on each color. If most are honest and one is black, then

choose not to protect white color. If the one is white, then choose not to protect black because we know

white one always say white, so black color should be the truth.

25. I based my decision on the probability of the honest gremlin being chosen.

26. I would base my answers off of how many honest goblins there were.

27. I chose the best odds

28. If it was more than approximately a 70% chance of drawing a black ball, I decided to protect. The cost to

protect outweighed the potential loss of not protecting.

29. If the gremlin was honest then I did not buy protection because they were accurate in telling me the color

of the ball.

30. If there were only honest gremlins then I never protected but even if there was one white-swamp gremlin or

one black-swamp gremlin then I payed for protection.

31. If the gremlins were honest, I didn’t buy protection. If there were swap gremlins, I calculated the chance of

getting a hint from a swap gremlin and considered that along with the chance of getting a black ball. If the

total chance of getting a black ball was more than 15% I get protection.

32. I determined what the probability was that the gremlin would tell the truth. The more honest gremlins in

the lineup, the less likely I was to buy protection. However, I’m risk-averse, so I was more likely to buy

protection than not because the risk was too high and the cost of protection was low.

33. I just used probability in my head

34. I took into consideration how many honest there were and looked at the chances of picking a

ball

35. I was able to calculate the odds from the hints. It was not a measurement requiring me to calculate the

chance of balls, but of variance between the hints. This made it easier to calculate the probability of what

the chances the gremlins would give regardless of the actual odds (14/6 white-black balls)

36. I just took into note the goblins that were listed, and then the probability of which the information could be

truthful or not.

37. I just relied on the number of honest gremlins to inform my decisions

38. If there were a white swamped gremlin, I would buy the protection if it said white ball. If it said black on

a white swamped I would always not buy the protection. This is vice versa if there was a black swamped

gremlin.
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39. I used the strategy of using the ”honest gremlin” to my advantage to know when I could get away with not

paying for protection

40. I relied on understanding which type of gremlin was presented and then based my decision on their bias/lack

of bias. Honest gremlin were a simple binary decision (white -¿ no protection, black -¿ protection). The

white gremlin would default to no protection unless the probability of black was greater than 25%. The black

gremlin defaulted to protection.

41. I considered the probability of the computer selecting a white ball and a honest gremlin. If that probability

was high (>70%), then I decided not to buy protection. When there were only honest and black gremlins

and the hint was that the ball was white, then it was easier since that hint could only come from an honest

gremlin.

42. I took into consideration which of the gremlins I got. If it were two honest ones, I would not buy protection

if they said white because they were right. If they were two honest ones and a black one, and they said it

was white, I would do the same thing because the black one would never say the ball is white. If any of the

gremlins said the ball was black, I would buy protection because there would always be a chance that the

ball was black.

43. It was really just similar to math and common sense.

44. I went with the odds. I didn’t buy protection if the probability of picking a ball was really high in a situation

45. I would look at how many honest gremlins there were to see if i could trust it or not. ex: if there were only

honest and white gremlins, and they said the ball was white, i would trust that.

46. If it was all honest then I 100% percent trusted it and went for no protection but if there was even a chance

of dishonest gremlin then I went with protection

47. My strategy depended on the gremlins. I was willing to pay a higher price for more honest gremlins, while I

was not willing to pay as much when there were not as many honest gremlins.

48. The higher the % of black balls the more likely I was to buy protection.

49. I based it off of the amount of different colored balls mainly. Because, if there was only 2 black balls and one

black gremlin, then I would most likely have a white ball chose if the other two were honest.

50. I looked at the percentage and the chance of drawing which ball, and I compared it to the grimlin options/hints

and made my decision based off of the numbers I was provided.

51. I am broke and I was willing to take risks to make more money.

52. I just hoped for the best and picked one

53. If it was all honest gremlins I did not buy protection. Even if there was one un honest gremlin

I was skeptical to buy protection. If there was more than one un honest gremlin I definitely

bought protection.

54. If there were more black balls I would decide to protect it because there was a higher chance it needed to

be and if there were more white balls I didn’t protect it because I assumed the chance of a black ball being

chosen was lower.

55. My strategy in task two was primarily based on the gremlins. For example, if they were all honest then I

would not buy protection if they said white but would if they said black. Furthermore, if four were honest

and one was a white-choosing gremlin, then if the gremlins said the ball was black I would buy protection;

Considering that the white gremlin could only say the ball would be white, then it is known that an honest
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gremlin said that the ball would be black and vise versa. I did not really consider the probability of the balls

being chosen and rather focused on the likely hood that the hint given by the gremlins is correct.

56. I would first take into account how many white and how many black balls were in a box, and the chance of

drawing each. With the gremlins then telling a hint I would not buy protection if the gremlin said white and

the percent of drawing white was more than 75%. I used this kind of method for the whole task.

57. my strategy for this task was to only buy protection if there was a white or black gremlin and not if there

was a truth gremlin

58. the percentages of black and white balls and which gremlins I would get to give a hint.

59. I took my chances that the gremlins telling the truth would be selected

60. If the goblins were all honest I would buy protection if they say the black was the ball chosen and not if the

ball was white. If 1 of the goblins was saying the ball was black or white exclusively I would buy protection

if they say it was black and not if the ball was white. If 2 of the goblins was saying the ball was black or

white exclusively I would buy protection no matter what they said

61. How likely it was that it would be white

62. I mainly looked at the probability percentage of the computer choosing a white ball. If it was greater than

or equal to 70%, then I would not choose protection.

63. It was pretty simple, actually. I basically based my decision off of the amount of honest gremlins there were.

If there were 4/5 honest, then there was an 80% chance the hint was correct. On a situation with 50% white

and 50% black, this strategy proved to be helpful.

64. I based my decision off of the makeup of the gremlins if they were all honest and said the ball was white I

would not buy protection and if they said it was black I would buy protection. If there was a 1/3 chance of

an honest gremlin being picked for the hint I would just buy protection because I did not like the odds of

the hint being true. If the chance of an honest gremlin being picked was 2/3 I would look at the probability

of a white/black ball being chosen and then make my decision to protect or not off of that.

65. I based my chances solely on the honest Gremlins.

66. I mostly would buy protection if there was an over 50 percent chance to get a black ball.

67. I thought of how many un honest gremlins there were and tried to guess the percent of accuracy I would be

given based on the colors.

68. If it was mostly Honest Grimlins I took the hint

69. I looked at the different types of gremlins in each group to make my decision. If it was all of the honest

gremlins, I would go from there, but even if it were 2 honest and 1 black or white swamp gremlin that would

inform my decision better than if it was an equal mix of all three types

70. I looked at the % of white vs black balls then looked at how many honest grimlins there were. If there were

a majority of white balls and honest grimlins I would do no protection for a white ball but buy protection

for black.

71. Always went with the honest ones. When there was one white or one black, I would know it was an honest

one when they said the opposite of the color. For example, two honest and one white, when it said the ball

was black, I knew it would be black because the white can’t say that.

72. I compared the number of balls to the gremlins hints and if the chances were higher than 50% ish I wouldn’t

get protection
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73. I would always take the hints from honest and be skeptical of non-honest

74. I looked at the gremlins and then looked at their hint. depending on what gremlins I had, i looked at the

combination of balls to see if I should risk it or not. If I had a lot of white balls and quite a few honest

gremlins, I did not buy the protection plan

75. I decided weather or not to buy protection based on the gremlins

76. I am basically gambling so I would not pay attention to the Gremlins and look at the percentages

77. Sorry. My strategy was same through-out, except the very first question of task1. Risk-averse, not worried

about losing $5. Also, not trusting even honest gremlins or perhaps myself if I had mis-read.

78. Just went with my gut guess. I didn’t really use a strategy for any of them tbh

79. there was no need to protect if the hint were made by all honest gremlins. also no need to protect if i had

a combination of honest and black gremlin and the prediciton said it’s white cos a black gremlin will never

give a white answer

80. I had two honest gremlins, so the hint was 100% accurate.

81. I measured my decision based off of the type of gremlin giving the hint. If I felt that the gremlin or group

was highly trustworthy, I would follow the advice.

82. If it was highly likely that the gremlin was going to be correct, I chose no protection. I aimed for the highest

payout each round based on the amount of black to white balls there were.

83. If there were all honest ones I would not buy protection if it was white. I bought protection on all the others

so that I would not lose more money.

84. I just created a pattern in my head and looked at the percentage of the likeliness of a black ball being drawn

or not.

85. I based it off the amount of honest gremlins presented

86. If the color said was the opposite of black or white eyed gremlin then I knew it was true because the rest

were honest gremlins

87. Based off how many white ball there was

88. I decided what to do based on both probability of selecting a ball of off composition of colors, and the used

the gremlins to add an extra level of certainty.

89. Simply used the projection of likelihood for how much risk I was willing to take.

90. If i was feeling lucky or not

91. Based off of the number of gremlins would help me determine to use protection or not

92. I used the gremlins as my strategy, i took more risks if it was the honest gremlins

93. I payed attention to the honest gremlins and I used my answers based off how many there were.

94. I would observe which of the gremlins informing me were honest and make my decision there.

95. I just tried not to risk it. I prefer getting a little bit less than the total amount than actually reducing $20

96. I figured out what the gremlins were saying and used that to calculate the probability

97. I just guessed.

98. I thought about which option would make me the most amount of money based on protection or not.

99. I just decided which ones wanted protection and not.

100. Basically if the white balls had a higher rate than the black balls I wouldn’t buy protection
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101. I looked mostly to whether or not I had an honest gremlin in my group. If I had gremlins which could be

dishonest, I then evaluated my chances based on the percentage of black vs. white balls in the box.

102. If I knew the ball would be white then I would not protect, everything else I protected

103. I was a little more clueless about it, I tried to make sense of the question first and then see the number of

balls that were black and if they were less, then I would not buy protection.

104. If the goblins were guaranteed to be honest, I followed their hint. If there was a white goblin at all, I ignored

the hint completely. If there was only a black goblin, I wouldn’t buy protection if the hint was white since

that couldn’t be correct.
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D Experiment Instructions (for Online Appendix) 
 

Introduction 
Welcome! This is a study of individual decision-making and behavior. The money you earn 
will be paid to you in cash at the end of this experiment. 

 

This experiment has 4 parts. For each part, we will give you instructions just before it begins. 
Your choices in one part of the experiment will not affect what happens in any other part. 
Each part proceeds in rounds. There will be 10 rounds in total. We expect that most 
participants would be able to complete the experiment in about 30 minutes. The experiment 
will end with a short questionnaire. 

 

At the end of the experiment, we will draw one of the rounds at random as the Payment 
Round. Each round of the experiment is equally likely to be drawn. Only the decision that 
you made in that Payment Round will determine your final payoff. Hence you should make 
every decision as if it is the one that counts, because it might be! 

 

At the start of the experiment, you will be given $25, so with the show up fee included 
you will have $30 in total. The choices you make within the experiment will determine 
how much of this amount you may lose. It is impossible to lose more than $25, so your 
earnings in the worst-case scenario will be exactly your show-up fee of $5. 

 

You are not allowed to talk during the study. If you have any questions, please raise your 
hand and we will come and answer your questions privately. Please do not use cell phones 
or other electronic devices until after the study is over. If we do find you using your cell 
phone or other electronic devices, the rules of the study require us to withhold your 
completion payment. 

 

Often during this study, you will be shown information or asked to make decisions. After 
doing so, remember to click the button that says "Continue". The experiment will not 
proceed until you click that button. 
  



Task 1: Protection Decision 
The first part of the experiment has 6 rounds. In each round, you will make the Protection 
Decision as described below. Please note that after the instruction screen, there will be a short 
quiz to make sure you understand the experiment. Please read the instructions carefully. 

 

At the beginning of each round, the computer will randomly draw a ball from the box, which 
contains white and black balls. The number of balls of each color can vary between rounds. 
We will not tell you which ball has been selected by the computer, but you will know the 
number of balls of each color as in the picture below. 

 
 

In each round you must decide whether to buy Protection. Protection costs $5. If you do 
not buy Protection, you lose $20 of your starting money if the Ball is Black, but you do not 
lose anything if the Ball is White. This means that your earnings will be: 

• $30-$5=$25 if you buy protection and the ball is White 
• $30-$5=$25 if you buy protection and the ball is Black 
• $30-$0=$30 if you do not buy protection and the ball is White 
• $30-$20=$10 if you do not buy protection and the ball is Black 

 

We would like to ask you a few questions to check your understanding of this task. Please feel 
free to go back to the instructions if needed. 
  



Task 2: Informed Protection Task 
 

The second part of the experiment has 6 rounds. Please note that after the instruction screen, 
there will be a short quiz to make sure you understand the experiment before you can continue 
to the first round. Please read the instructions carefully. 

 

As in the first part, the computer is going to randomly select one ball from the Box with 
white and black balls. The computer will show you the contents of the Box but will not tell 
you the color of the selected ball. 

 

Within each round, you would receive a hint about the ball's color from a gremlin. 
There are three types of gremlins: an honest gremlin always tells the true color of the Ball, a 
black-swamp gremlin always says that the Ball is black and a white-swamp gremlin always 
says that the Ball is white. This is how they look: 

 

 
 



The hints of white-swamp and black-swamp gremlins do not depend on the color of the 
selected ball. A white-swamp gremlin always says that the Ball is white and would never say 
that the Ball is black; a black-swamp gremlin always says that the Ball is black and would 
never say that the Ball is white. Their hints can be correct only by accident. 

 

Suppose, for example, that the Ball is black. Then an honest gremlin would say that the Ball 
is black. A white-swamp gremlin would say that the Ball is white. A black-swamp gremlin 
would say that the Ball is black. 

 

On the other hand, if the Ball is white, then an honest gremlin would say that it is white. 
A white-swamp gremlin would say that it is white. A black-swamp gremlin would say that 
it is black. Remember that gremlins are just pre-coded computer algorithms and do not 
intentionally try to help or harm you. 

 

The computer picks the hinting gremlin randomly from a group of gremlins of different 
types, where each individual gremlin is equally likely to be selected. You will be 
informed of the mixture of gremlins in this group (similar to the figure below), but you do 
not know which gremlin is giving the hint. 

 

 
 

The group of gremlins from which the computer selects the hinting gremlin can change 
from round to round. For example, in one round, you might have two honest gremlins and 
one white-swamp gremlin in the group. In another round, you might have three honest 
gremlins and two black-swamp gremlins. You will see the group's composition before 
making your decisions. 



There are two possible hints: either the gremlin says "The Ball is white!" or it says 
"The Ball is black!". We would like to know whether or not you would buy protection for 
each of these possible hints. That is, if the hint you receive from a gremlin randomly 
selected from that group says the Ball is white, would you buy protection? If the hint you 
receive says that the Ball is black, would you buy protection? 

 

You will need to figure out on your own how likely it is that the hint is true given the 
group's composition. For example, if all the gremlins are honest, any hint from a 
randomly drawn gremlin is true. If all the gremlins are white-swamp or all are black-
swamp, then their hints give no information. Most often though, your group will include 
both honest and dishonest gremlins. 

 

As before, protection costs $5. If you do not buy Protection, you lose $20 of your starting 
money if the Ball is Black, but you would not lose anything if the Ball is White. This means 
your earnings will be: 

• $30-$5=$25 if you buy protection and the Ball is White 
• $30-$5=$25 if you buy protection and the Ball is Black 
• $30-$0=$30 if you do not buy protection and the Ball is White 
• $30-$20=$10 if you do not buy protection and the Ball is Black 

 

After you tell us your decision for each possible hint, the computer will draw a ball. Then it 
will record a hint from one randomly chosen gremlin from the group. If the gremlin says that 
the Ball is white, the computer will implement the choice you made for that hint. If the 
gremlin says that the Ball is black, the computer will implement the choice you made for that 
hint. The flow chart below illustrates what happens in each round. You should make your 
choice for each of two possible hints carefully because either one may determine your payoff 
if this round is chosen for payment. 



 

 

 

 



 

 

Task 3: Measuring Chances 
 

In this part of the experiment, you will estimate the chance that the Ball is black based on 
gremlin's hints. We will first show you: 1) the box with white and black balls and 2) the 
group of gremlins. Imagine that the computer then randomly picks one ball from the box and 
one gremlin out of this group who will give you a hint. We will ask you two questions: 

1. If this gremlin says that the Ball is white, what do you think are the chances that the 
Ball is white? 

2. If this gremlin says that the Ball is black, what do you think are the chances that the 
Ball is black? 

Your estimate each time will be a percentage between 0 and 100. To illustrate how this 
works, suppose that all the gremlins in the group are honest. It means that their hints are 
always true: if a gremlin says that the Ball is white, there is exactly 0% chance of it being 
black. If a gremlin says that the Ball is black, there is exactly 100% chance that the Ball is 
black. And the chance that the gremlin says it is Black is exactly the chance that is is 
Black or the proportion of black balls in the box. This case is very easy, but in most cases, 
the group of gremlins will include some white-swamp and/or black-swamp gremlins. You 
should take into account the number of white and black balls and the proportions of 
each type of gremlin in your group when estimating the chances. 

 

Your payoff depends on the accuracy of your answers. All you have to understand in this 
task is that you make more money if your guess is closer to the actual probability of the 
event given your information. You make the most money if your guess is exactly equal to 
the actual probability of the event. For example, you want to predict the chances that the 
ball is black if the gremlin says that it is black. If the actual probability is 10% and you 
choose 20%, you payoff will be $30 with probability 90% and $10 with probability 10%. 
If you choose 50% instead, your payoff will be $30 with the probability of about 60%>. As 
you can see, you can win if your estimate is very imprecise, but chances are higher for a 
more accurate estimate. The next two paragraphs lay out the details of how the payoff is 
calculated, and you are welcome to read these details. 

 

If any round of this task is chosen as the Payment Round, the computer would, first, draw 
a ball at random from the Box. Then it would record a hint from one randomly chosen 



 

 

gremlin from the group. Finally, it will draw one random lottery with chances between 0 
and 100. 

 

This computer will then calculate your payment based both on the hint, the actual ball color 
and this random lottery. This is easier to understand through an example. Suppose, that the 
gremlin hints that the Ball is white and you estimate that the Ball is indeed white with 
probability 85%. If a computer draws a lottery with chances of 85% and above, then you lose 
$20 if the Ball is white. If the computer draws a lottery with chances lower than 85%, then 
you would lose $20 with the chance specified in the lottery. 

 

Belief Elicitation: rounds 
 

Suppose that one of the gremlins says that the Ball is white. What do you think is the 
chance that the Ball is actually white? Please estimate to the best of your ability and make 
your selection on the slider below: 

Impossible         Completely certain 

0 10 20 30 40 50 60 70 80 90 100 

Chance (%) that the Ball is white 

 

Suppose that one of the gremlins says that the Ball is black. What do you think is the 
chance that the Ball is actually black? Please estimate to the best of your ability and 
make your selection on the slider below: 

Impossible         Completely certain 

0 10 20 30 40 50 60 70 80 90 100 

Chance (%) that the Ball is black 

 

 

This concludes the round. You will see the outcome only if this round is selected as the 
Payment Round in the end of the experiment. 

 
  



 

 

Task 4: Value 
 

Were gremlins helpful for you? How much would you pay for their hints if given an 
opportunity?  

 

In this task, you can buy a hint before making a protection decision. As before, the hint 
will come from a gremlin which is randomly selected from a group of gremlins of different 
types. We will show you the group composition, but not the type of the hinting gremlin. 

 

After seeing the group of gremlins, please think about the prices you are willing to pay for 
the hint. You will then select all acceptable prices by filling a table such as this: 

 

 
 

In this table, you select all the prices which you are willing to pay to receive a hint. For 
example, if you are willing to pay no more than $0.5, then the first and the second rows in 
the table should be selected as shown in the example above. If you are willing to pay no more 
than $3, all the rows from the first to the seventh one should be selected. For your 
convenience, you just need to select the maximum price you are willing to pay for the hint 



 

 

and the system will automatically select all prices lower than that chosen price. You can 
always unselect the prices by clicking on their checkboxes. 

 

In each round, you will have a different group of gremlins. There are also six rounds in 
this part of the experiment. You will also have to answer a short quiz before proceeding to 
the rounds to make sure you understand the experiment. Please read the instructions 
carefully. 

 

Payoff Calculation. If this the Payment Round, the computer will randomly select one of 
the prices from the Table. If you chose to buy a hint at this price, you would go through 
one round of the Informed Protection Task. You will make a Protection decision after 
receiving a hint from the gremlin. We will subtract the selected price from your payoff in 
that round. Note, that the price you are paying does not affect the hint's quality. 

 

If you opted not to buy a hint at this price, you would go through one round of the Blind 
Protection task. In other words, you would make a Protection decision without a hint. 

 

 
 



 

 

 

For example, suppose that you fill the table as shown above and this round is the 
Payment Round. If the computer randomly selects price $0.5 (the second line), you will 
pay $0.5 and go through one round of the Informed Protection: you will receive a hint 
from one of the gremlins and then choose to protect or not. Your payoff would be equal 
to what you would have received from the Informed Protection round minus the price of 
the hint. In this example, if you do not protect, then your payoff will be $30-$0.5=$29.5 
if the Ball is white and ($30-$20)-$0.5=$9.5 if the Ball is black. If you decide to protect, 
your payoff will be ($30-$5)-$0.5=$24.5 for any color of the Selected Ball. 

 

If, for example, the computer randomly selects $1 (line 3) instead of $0.5, you will go 
through one Blind Protection round and this round would determine your payoff. You will 
neither pay $1 nor receive a hint, because you did not want to pay this price for a hint 
based on your selections in the Table. The computer would calculate your payoff in the 
same way as in the Part 1 of the experiment (Blind Protection). 

 

Suggestions. You should consider the composition of gremlins when selecting the prices to 
pay. For example, you might have only white-swamp gremlins in the group. Because 
white-swamp gremlins always say that the Ball is white, their hints are worthless, and 
most people would not pay anything for them. On another hand, a hint from a group of 
honest gremlins is more valuable because it tells you the Ball's color with certainty. 

 

It is always in your best interest to select all the prices below or equal to your maximum 
price. Suppose, for example, that you want to pay any price up to $3 for a hint from a certain 
group of gremlins. If you do not select the price of $2 and this price is randomly chosen by 
the Computer, you would have to make the protection decision without a hint even though 
you prefer to pay $2 to get one. On another hand, if you select the price of $5, you might have 
to pay $5 which is $2 more than the maximum price you are willing to pay. 
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